

IMPLEMENTING A LIGHTWEIGHT
OPENSTACK JUNO/CINDER HOST AS
A VIPR CONTROLLER STORAGE
PROVIDER

ABSTRACT

This white paper explains how to build a lightweight VM or physical host as a ViPR
Controller 2.2 third-party storage provider using Ubuntu LTS 14.04. The approach
illustrated is intended for evaluation and test purposes but similar techniques could be
used for production deployments.

March, 2015

2

To learn more about how EMC products, services, and solutions can help solve your business and IT challenges, contact your local
representative or authorized reseller, visit www.emc.com, or explore and compare products in the EMC Store

Copyright © 2015 EMC Corporation. All Rights Reserved.

EMC believes the information in this publication is accurate as of its publication date. The information is subject to change without
notice.

The information in this publication is provided “as is.” EMC Corporation makes no representations or warranties of any kind with
respect to the information in this publication, and specifically disclaims implied warranties of merchantability or fitness for a
particular purpose.

Use, copying, and distribution of any EMC software described in this publication requires an applicable software license.

For the most up-to-date listing of EMC product names, see EMC Corporation Trademarks on EMC.com.

VMware is a registered trademark or trademark of VMware, Inc. in the United States and/or other jurisdictions. All other trademarks
used herein are the property of their respective owners.

Part Number H13996

http://www.emc.com/contact-us/contact-us.esp
http://www.emc.com/
https://store.emc.com/?EMCSTORE_CPP

3

TABLE OF CONTENTS

EXECUTIVE SUMMARY .. 4
WHY OPENSTACK JUNO? ... 4

WHY VIPR CONTROLLER? .. 4

IS THERE AN EASIER WAY TO DO THIS? ... 5

AUDIENCE ... 5

HOST REQUIREMENTS .. 5
NOTES .. 5

CREATE THE HOST ENVIRONMENT .. 5
INSTALL A BASIC LINUX HOST .. 5

UPDATE THE HOST AND SET UP BASIC SERVICES .. 6

INSTALL AND CONFIGURE CINDER COMPONENTS 7
DEFINE PASSWORDS .. 7

INSTALL DATABASE AND MESSAGE QUEUE SERVICES .. 7

INSTALL AND CONFIGURE AUTHENTICATION SERVICE ... 8

INSTALL AND CONFIGURE BLOCK STORAGE SERVICE .. 11

CONFIGURE CINDER FOR THIRD-PARTY STORAGE ... 13

WATCH OUT FOR QUOTA LIMITS .. 15

SET UP VIPR CONTROLLER ... 16
CREATE NETWORK AND HOST OBJECTS.. 16

CONFIGURE VIPR CONTROLLER FOR CINDER STORAGE .. 17

CREATE A VIRTUAL ARRAY AND POOL .. 18

CONCLUSION .. 22

 4

EXECUTIVE SUMMARY
The explosive growth of OpenStack for instance hosting raises a need for flexible and open storage platform management, EMC’s
ViPR® Controller product abstracts the storage control path from the underlying hardware arrays so that access and management of
multi-vendor storage infrastructures can be centrally executed in software. Using ViPR Controller and OpenStack together, users can
create “single-pane-of-glass” management portals from both the storage and instance viewpoints, easily providing the right resource
management tool for either group.

This document describes how to build a ViPR Controller storage provider based on the freely available Ubuntu LTS 14.04 release.
Whether built as a physical host or as a virtual machine, the technique allows ViPR Controller to use almost any third-party storage
supported by the OpenStack Juno release. The configuration looks like this:

Figure 1. ViPR CONTROLLER STORAGE PROVIDER BASED ON UBUNTU LTS 14.04

Although this implementation is suitable for demonstration and test purposes, EMC strongly advises a thorough review of the ViPR
Controller and OpenStack documentation and appropriate validation to determine suitability before deploying in any production
environment.

WHY OPENSTACK JUNO?
The OpenStack cloud software stack contains modular components to handle compute (Nova), object storage (Swift), block storage
(Cinder), and networking (Neutron), among other functions. Cinder provides a consistent, open layer for persistent block storage
independent of any vendor API requirements. Block storage volumes exposed via Cinder fully integrate into the ViPR Controller
services via a consistent interface, allowing cloud users to manage device creation, snapshot, and other storage functions while
hiding vendor-specific implementation and control details. Juno is the current release of OpenStack as of this writing.

WHY VIPR CONTROLLER?
ViPR Controller provides separation of control and data planes in storage management, allowing tiering, provisioning, pooling, and
other functions across multiple-vendor physical storage array installations. Through the use of REST APIs, different front-end
consoles (such as OpenStack) can present a unified interface to ViPR Controller control functions, thus consuming storage from ViPR
Controller in a clean, vendor-neutral fashion. In addition, ViPR Controller can act as a front-end to storage presented from
OpenStack, allowing control and use of Cinder volumes created from arrays that ViPR Controller may not natively support.

5

IS THERE AN EASIER WAY TO DO THIS?
This paper demonstrates a bare-metal approach to building an OpenStack provider for use with ViPR Controller. If you’re interested
in a turnkey download, look at https://community.emc.com/docs/DOC-37248, which describes a pre-built VMware virtual machine
specifically designed to provide Cinder and Keystone services to ViPR Controller. There’s also information about certain third-party
arrays and other useful community-provided material at that link.

AUDIENCE
This white paper is intended for system architects, administrators, and implementors who want to use Cinder as a mechanism to
interface third-party storage arrays to their ViPR Controller installation.

HOST REQUIREMENTS
• Cinder host: Minimum requirements include an x86_64 processor with at least two cores, at least 2 GB of RAM, at least 8 GB of

disk space and at least one NIC, as well as connection to an array. A virtual machine meeting these specifications will work (and
was used for this document).

• A VMware environment containing a ViPR Controller 2.x instance

• At least one “target” host (Windows or Linux) to consume storage from the ViPR Controller instance.

• A local-area network connecting all of the above components.

• DNS, NTP, and Internet connectivity to download the components.

This document was developed using:

• OpenStack host: Ubuntu 14.04 LTS x86_64 with attachment to a NetApp 8.2 7-mode iSCSI block storage provider

• ViPR Controller host: ViPR Controller 2.2.0.0 (build 758) hosted on VMware ESXi 5.5.0

• Target host: CentOS 6.5 with iscsi-initiator-utils installed

NOTES
• In this document, commands performed at the shell prompt while logged in as root are prefixed by “#”, and those performed

within the database engine are prefixed by “>”.

• If you’re copying-and-pasting from the text, watch for space and dash conversions, and note that lines ending in “ \” are
continuations. You may want to paste your text into an editor, check the conversions and join continuation lines, (eliminating
the \ character) and then paste the result to your command line. Most OpenStack command arguments start with a double dash
(“--“).

CREATE THE HOST ENVIRONMENT

INSTALL A BASIC LINUX HOST
To build the Cinder host, download Ubuntu 14.04 LTS from http://releases.ubuntu.com/14.04.1/ubuntu-14.04.1-server-amd64.iso),
boot the host or VM on that image, and perform a normal OS installation. Take the default settings unless local requirements dictate
otherwise. Select the “basic” and “OpenSSH” server options; the GUI’s not required. Set GRUB as the master boot loader and let the
host reboot at the end of the installation.

Log into the newly installed host at the console, su to root, and open /etc/network/interfaces in an editor. OpenStack likes static
addressing for its nodes, so set the configuration to something similar to the following, inserting appropriate values for your network:

The primary network interface

auto eth0

iface eth0 inet static

address xxx.xxx.xxx.xxx

netmask xxx.xxx.xxx.xxx

6

gateway xxx.xxx.xxx.xxx

dns-nameservers xxx.xxx.xxx.xxx xxx.xxx.xxx.xxx

Note the name server list is space, not comma, separated; this differs from Red Hat Linux variants. If name resolution doesn’t work
after you reboot, make sure you didn’t add a comma between your nameserver addresses.

ViPR Controller needs a root login via SSH to work properly on Ubuntu. Edit /etc/ssh/sshd_config, changing:

PermitRootLogin without-password

StrictModes yes

to:

PermitRootLogin yes

StrictModes no

While still in the root shell, set up a password for the root's login (using “passwd root”), Next, edit /etc/hosts. Remove the address
line starting with “127.0.0.1” and create an entry using an explicit IPv4 address, adding the aliases “localhost” and “controller”. The
file should contain the following:

xxx.xxx.xxx.xxx <host> <host.domain> controller localhost

127.0.0.1 loopback

Reboot to pick up the network configuration. Once the host is back up, you should be able to ssh in as root.

UPDATE THE HOST AND SET UP BASIC SERVICES
After logging in as root, verify your static network settings and DNS, then pull down the updates from the Ubuntu repository:

apt-get -y update

In order to get the OpenStack Juno code (which provides the Cinder storage management functionality), configure apt to use the
Juno repository. Repeat the update to pick up any Juno-specific info, and then upgrade the distribution to the latest code:

echo "deb http://ubuntu-cloud.archive.canonical.com/ubuntu" "trusty-updates/juno main" >

/etc/apt/sources.list.d/cloudarchive-juno.list

apt-get install ubuntu-cloud-keyring

apt-get -y update

apt-get -y dist-upgrade

Set up NTP for time synchronization and if needed, install the iSCSI initiator (the example installation uses an iSCSI NetApp as a
back end):

apt-get -y install ntp

apt-get -y install open-iscsi

Edit ntp.conf to install your local time servers, then reboot (as the kernel may have updated).

7

INSTALL AND CONFIGURE CINDER COMPONENTS

DEFINE PASSWORDS
Create a table similar to the one below containing the passwords for your installation. Table 1 provides the variable names
(matching those in the OpenStack documentation) and the passwords reflect the demonstration environment:

Table 1 VARIABLE NAMES, PASSWORDS AND DESCRIPTIONS
Variable name Password Description
<database> dbpass Root password for the database
RABBIT_PASS rbpass Password of user guest of RabbitMQ
KEYSTONE_DBPASS kypass Database password of Identity service
ADMIN_PASS adpass Password of user admin
CINDER_DBPASS cdpass Database password for the Block Storage service
CINDER_PASS cdpass Password of Block Storage service user cinder

INSTALL DATABASE AND MESSAGE QUEUE SERVICES
After logging in as root, you next install the Python configuration scripts for the APT distribution system:

apt-get -y install python-software-properties

Next, add the link for the Juno repositories into APT:

add-apt-repository cloud-archive:juno

OpenStack relies heavily on a database to store and manage its information. Install mysql using the <database> password from the
chart above:

apt-get -y install python-mysqldb mariadb-server

To configure the SQL engine, edit /etc/mysql/my.cnf, and under [mysqld] add the following:

default-storage-engine = innodb

innodb_file_per_table

collation-server = utf8_general_ci

init-connect = 'SET NAMES utf8'

character-set-server = utf8

Start the database:

service mysql restart

Figure 2 provides an example of a normal output.

Figure 2. MYSQL RESTART NORMAL OUTPUT

8

Install the Rabbit message queue service:

apt-get -y install rabbitmq-server

Rabbit’s installer starts the service automatically. Change the guest password to the RABBIT_PASS password in your table:

rabbitmqctl change_password guest rbpass

service rabbitmq-server restart

INSTALL AND CONFIGURE AUTHENTICATION SERVICE
While logged in as root, build the database structures for the Keystone authentication service using the following commands (note
that ‘kypass’ was our Keystone password from the table). Don’t forget to end each database command with a semicolon, and
substitute your Cinder host’s IP address for <host_ip>:

mysql -u root -p

> create database keystone;

> grant all privileges on keystone.* to keystone@<host_ip> identified by 'kypass';

> grant all privileges on keystone.* to keystone@'%' identified by 'kypass';

> exit;

Figure 3 provides a sample output from a successful creation operation.

Figure 3. SAMPLE OUTPUT FROM A SUCCESSFUL CREATION OPERATION

Next, install the Python client for Keystone:

apt-get -y install keystone python-keystoneclient

Now that the database is installed, you can configure Keystone. Start by generating a random token value for use in initial setup,
copy the string to your clipboard, and export it along with your host’s IP address information:

9

openssl rand –hex

<returns token value>

export OS_SERVICE_TOKEN=<token value>

export OS_SERVICE_ENDPOINT=http://<host_ip>:35357/v2.0

Verify by checking the environment, which should look similar to Figure 4.

Figure 4. VERIFY BY CHECKING THE ENVIRONMENT

Open /etc/keystone/keystone.conf in an editor, and make the following changes:

• Under [DEFAULT], uncomment "admin_token" and replace with the random string you generated.

• Under [database], change database connection string to:

connection = mysql://keystone:kypass@127.0.0.1/keystone

(Replace “kypass” with your Keystone password, but leave the rest alone; this CANNOT be "controller", an alias, or the host's IP; just
use the loopback address.)

• Under [token], uncomment:

driver=keystone.token.backends.sql.Token

Populate the initial database schema as follows (note that the first command produces no output):

keystone-manage db_sync

service keystone restart

Keystone tends to keep expired tokens around which can eventually fill up your database and disk. Run the following command to
create a cron job that will purge them out hourly:

(crontab -l -u keystone 2>&1 | grep -q token_flush) || echo '@hourly /usr/bin/keystone-manage

token_flush > /var/log/keystone/keystone-tokenflush.log 2>&1' >> /var/spool/cron/crontabs/keystone

Create the admin, cinder, & service users / tenants, and then build the Keystone endpoint. This is easiest from a script file, so create
build_keystone.sh containing the following, substituting your admin password from the table (and e-mail if desired). Everything else
is literal and stays as-is:

keystone tenant-create --name admin --description "Admin Tenant"

keystone user-create --name admin --pass adpass --email null@void.com

keystone role-create --name admin

10

keystone user-role-add --tenant admin --user admin --role admin

keystone role-create --name _member_

keystone user-role-add --tenant admin --user admin --role _member_

keystone tenant-create --name service --description "Service Tenant"

keystone service-create --name keystone --type identity --description "Openstack identity"

keystone endpoint-create \

 --service-id $(keystone service-list | awk '/ identity / {print $2}') \

 --publicurl http://controller:5000/v2.0 \

 --internalurl http://controller:5000/v2.0 \

 --adminurl http://controller:35357/v2.0

Execute the script file to perform the actions (you’ll see a lot of output fly by):

chmod +x build_keystone.sh

build_keystone.sh

Verify database entry creation by running the command sequence as noted in the display in Figure 5.

Figure 5. VERIFY DATABASE ENTRY CREATION

Perform an end-to-end test to ensure Keystone’s working properly. The password is that of the _admin_ tenant (adpass):

unset OS_SERVICE_TOKEN

unset OS_SERVICE_ENDPOINT

11

keystone --os-tenant-name admin --os-username admin --os-password adpass --os-auth-url

http://controller:35357/v2.0 token-get

You should see output similar to the one shown in Figure 6.

Figure 6. KEYSTONE VERIFICATION

As a last step, create a .bash_profile file in root’s home directory, changing the password if needed, then source the file:

export OS_TENANT_NAME=admin

export OS_USERNAME=admin

export OS_PASSWORD=adpass

export OS_AUTH_URL=http://controller:35357/v2.0

source ~/.bash_profile

INSTALL AND CONFIGURE BLOCK STORAGE SERVICE
As root, create the database entries for the Cinder block storage service using the following commands (note that ‘cdpass’ is the
Cinder password from the table):

mysql -u root -p

> create database cinder;

> grant all privileges on cinder.* to cinder@<host_ip> identified by 'cdpass';

> grant all privileges on cinder.* to cinder@'%' identified by 'cdpass';

> exit;

The output should resemble the Keystone table sequence. Next, build the user, service, and endpoints (one for Cinder v1, and one
for Cinder v2). Again, the easiest approach is to copy the text below into build_cinder.sh, changing only the cinder password if
needed:

keystone user-create --name cinder --pass cdpass

keystone user-role-add --user cinder --tenant service --role admin

keystone service-create --name cinder --type volume --description "Openstack block storage (v1)"

keystone service-create --name cinderv2 --type volumev2 --description "Openstack block storage (v2)"

keystone endpoint-create --service-id $(keystone service-list | awk '/ volume / {print $2}') \

 --publicurl http://controller:8776/v1/%\(tenant_id\)s \

12

 --internalurl http://controller:8776/v1/%\(tenant_id\)s \

 --adminurl http://controller:8776/v1/%\(tenant_id\)s

keystone endpoint-create \

 --service-id $(keystone service-list | awk '/ volumev2 / {print $2}') \

 --publicurl http://controller:8776/v2/%\(tenant_id\)s \

 --internalurl http://controller:8776/v2/%\(tenant_id\)s \

 --adminurl http://controller:8776/v2/%\(tenant_id\)s

Execute the script file to perform the build:

chmod +x build_cinder.sh

build_cinder.sh

Install the Cinder infrastructure packages (you’ll verify the database entries in a later step:

apt-get -y install cinder-api cinder-scheduler cinder-volume python-cinderclient

Cinder installs a partial cinder.conf file but you need to add authentication, message queue, and other customizations before things
will work. Append the following text to /etc/cinder/cinder.conf, substituting your IP address and passwords as needed. Don’t change
the “localhost” entry – mysql may fail if you do:

rpc_backend = rabbit

rabbit_host = controller

rabbit_password = rbpass

my_ip = <host_ip>

rpc_response_timeout=300

[database]

connection = mysql://cinder:cdpass@localhost/cinder

[keystone_authtoken]

auth_uri = http://<host_ip>:5000/v2.0

identity_uri = http://<host_ip>:35357

auth_host = <host_ip>

auth_protocol = http

auth_port = 35357

admin_user = cinder

admin_tenant_name = service

admin_password = cdpass

To complete the Cinder initial installation, populate the database and reboot. Note that the cinder-manage syntax is slightly different
than keystone-manage:

cinder-manage db sync

reboot

13

CONFIGURE CINDER FOR THIRD-PARTY STORAGE
Now that Cinder is installed, configure it to work with your particular block storage system. The details vary and are documented by
the storage system vendor. This example uses a NetApp 8.2 7-mode iSCSI block storage provider, and the configuration information
needed is available in the OpenStack Juno documentation set.

To begin, log in as root and add the appropriate information at the end of /etc/cinder/cinder.conf. In the NetApp case:

[netapp-iscsi]

volume_driver=cinder.volume.drivers.netapp.common.NetAppDriver

volume_backend_name=netapp-iscsi

netapp_login=<netapp_user_login>

netapp_password=<netapp_user_password>

netapp_server_hostname=<netapp_IP_address>

netapp_storage_family=ontap_7mode

netapp_storage_protocol=iscsi

netapp_transport_type=http

In the same file, under the “[DEFAULT]” heading, add:

enabled_backends=netapp-iscsi

Cinder uses the information you added in cinder.conf to define the array in its database. The following commands actually create the
database entries:

cinder type-create netapp-iscsi

cinder type-key netapp-iscsi set volume_backend_name=netapp-iscsi

You can use “cinder extra-specs-list” to verify the operation. The command output should look similar to Figure 7.

Figure 7. CINDER TYPE CREATION OUTPUT

Log into the target array via iSCSI and verify connection:

iscsiadm -m discovery -t st -p <array_iSCSI_ip>

iscsiadm -m node -L all

iscsiadm -m node

14

The output should resemble Figure 8.

Figure 8. iSCSI DISCOVERY OUTPUT

Use the array utilities to configure an initiator record and reboot the host to pick up the Cinder configuration. When the host comes
up, create a Cinder LUN. Build the LUN large enough that ViPR Controller can carve it up for host use.

First, check the iSCSI connection:

iscsiadm -m node

You should see an iSCSI record appear. Verify that no devices are allocated, then create a volume (here, the “10” indicates a 10 GB
LUN) using the commands below:

cinder list

cinder create --volume-type netapp-iscsi --display_name storage_pool 10

cinder list

A valid output from this sequence will resemble Figure 9.

Figure 9. SEQUENCE OUTPUT

15

This completes the Cinder installation. Remember, you now have a total of 10 GB available for ViPR Controller to assign as virtual
storage.

WATCH OUT FOR QUOTA LIMITS
There’s some great installation and troubleshooting information at https://community.emc.com/docs/DOC-3724. One of the tips
highlights a problem you might hit after setting up Cinder. You’ll probably want to go ahead and start creating volumes. However,
after you build a few, you’re likely to hit a problem as shown in Figure 10.

Figure 10. EXAMPLE OF A POTENTIAL PROBLEM

Out of the box Cinder allows 10 volumes per tenant. Interestingly, there’s no clean way to list the volumes as a total; you can only
see those for the current tenant. In order to see why this happens, use “keystone tenant-list” to determine the GUID for your tenant,
and then use “cinder quota-show” to list the quotas as shown in Figure 11.

Figure 11. LIST OF CINDER QUOTAS

https://community.emc.com/docs/DOC-3724

16

If you’re restricting quotas by user account, use “keystone user-list --tenant-id <tenant GUID> instead. Quotas also affect
snapshots, and space allocation allowed (1 TB). To change those values, use the GUID of the tenant, and update the desired quantity
with “cinder quota-update”, noting that default values remain for those not modified as shown in Figure 12.

Figure 12. DEFAULT VALUES REMAIN FOR THOSE NOT MODIFIED

After the quota modifications, the 11th volume creation proceeded without incident as shown below in Figure 13.

Figure 13. SUCCESSFUL VOLUME CREATION

Be sure your infrastructure can actually handle the increased values before modifying quotas.

SET UP VIPR CONTROLLER
ViPR Controller works within a virtual world, but it needs to understand physical configuration before it can construct its
virtualization. This section assumes that iSCSI is correctly installed on the target host per the previous sections of this document and
that ViPR Controller 2.2 is up and running.

CREATE NETWORK AND HOST OBJECTS
Start by creating a network for your target hosts and array ports. As root, log into ViPR Controller, then under Physical Assets |
Networks, click “Add IP network”, and provide a name (for example, “iSCSI_network”).

Next, identify the target host to ViPR Controller. Log into the target host and obtain its iSCSI initiator name and IP address by
running:

17

cat /etc/iscsi/initiatorname.iscsi

The result contains initiator information similar to:

InitiatorName=iqn.1994-05.com.redhat:1be597762a81

In ViPR Controller, navigate to Physical Assets | Hosts, then click “Add”, and provide the values from your target host (“name” can
be anything you want) as shown in Figure 14.

Figure 14. ENTER VALUES FROM YOUR TARGET HOST

Once the host appears, click on “Initiators”, then “Add”. In the “Port” box, paste in the IQN for your target host, leaving the “Node”
box empty.

Why not use auto-discovery? You can, but if your host has Fibre Channel cards installed – whether connected or not – ViPR
Controller may see the drivers and add the FC WWNs to its database. Later on, ViPR Controller can get confused as to what
communication channels are available. Manual setup keeps ViPR Controller from finding those FC drivers.

CONFIGURE VIPR CONTROLLER FOR CINDER STORAGE
In ViPR Controller, under Tenant Settings | Projects, create a project (“Project1”), and then open Physical Assets | Storage Providers.
Add the Cinder host using “Third-party block” as the type as shown in Figure 15; SSL is optional.

18

Figure 15. ADD CINDER HOST USING THIRD-PARTY BLOCK AS THE TYPE

After the save and discovery completes, click on Physical Assets | Storage Systems, and the third-party array should display as
shown in Figure 16.

Figure 16. THIRD PARTY ARRAY NOW APPEARS IN PHYSICAL ASSETS

Click on “pools” and you will see that storage exists in the pool as shown below in Figure 17 – as a matter of fact, a lot of storage
considering that the volume was only 10 GB in size.

Figure 17. CHECKING THE POOL SIZE

Where did that 1024 GB come from? As no storage has been allocated from this pool, ViPR Controller doesn’t have any valid
information from Cinder as to what’s available. That’s a normal display.

CREATE A VIRTUAL ARRAY AND POOL

19

Under “Virtual Assets | Virtual Arrays”, create a new virtual array to serve out the third-party storage. Select “Add Storage System”,
and check the netapp-iscsi driver as a resource as shown in Figure 18.

Figure 18. ADD NETAPP STORAGE

Under Physical Assets | Networks, open the iSCSI network previously created. Use the “Add” button and the “Add Array Ports”
dropdown, and the discovered port displays as shown in Figure 19.

Figure 19. ADDING ARRAY PORTS

Ensure that the array entry is checked and both the target host and the array port appear, then click “Save”, as shown in Figure 20.

Figure 20. VERIFYING THE TARGET AND ARRAY PORTS

20

Wait a few minutes for ViPR Controller to rescan, and then create a block virtual pool (vPool1) using the new array. Critical settings
include making it a thin iSCSI pool and setting multipath to 1 minimum, 1 maximum, and 1 path per initiator as shown in Figure 21.
Otherwise, ViPR Controller may expect multiple paths, and as a result won’t consider your array as a viable candidate for this pool:

Figure 21. CRITICAL SETTINGS FOR BLOCK VIRTUAL POOL

Once that completes, in ViPR Controller’s Service Catalog, go to “Block Services for Linux”, select “Create and Mount Block Volume”
as shown in Figure 22, then add the name of the target (physical) host, the new array, the new virtual pool, and so forth. Make sure
you provide a mount point (our example is “/ntap”) that doesn’t exist on the host – otherwise ViPR Controller cannot create it, and a
supported filesystem (ext4):

21

Figure 22. CREATE AND MOUNT BLOCK VOLUME WITHIN VIPR CONTROLLER SERVICE CATALOG

You may need to reboot your target host, but once done, you should see your new volume, formatted and mounted at /ntap. The
following commands will confirm the volume’s presence, as illustrated below:

multipath –ll (look for the “mpath” identifier)

mount (make sure the mpath partition is mounted)

df –h (check the amount of space available)

22

Figure 23. VERIFYING ALLOCATION COMPLETION

CONCLUSION
This document has demonstrated how to build a single-host Cinder platform for ViPR Controller using Ubuntu 14.04. Whether
implemented on a virtual or physical host, the technique enables ViPR Controller to use OpenStack’s Cinder modules in provisioning
from arrays that ViPR Controller may not natively support.

The author would like to express appreciation to the OpenStack / Cinder development and documentation team, as some of the
information contained herein originated in their work.

Again, EMC strongly recommends a thorough review of the ViPR Controller and OpenStack documentation and appropriate validation
to determine suitability before deploying in any production environment.

	2TEXECUTIVE SUMMARY2T 4
	2Thost requirements2T 5
	2TCREATE THE HOST ENVIRONMENT2T 5
	2TINSTALL AND CONFIGURE CINDER COMPONENTS2T 7
	2TSET UP VIPR CONTROLLER2T 16
	2TCONCLUSION2T 22

